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Abstract— Due to the increasing automation and connec-
tivity of future, software-defined vehicles, there is a growing
interest in safety in this area. Vehicle-to-Everything (V2X)
communication is a crucial aspect of this. However, testing
V2X applications in the real environment poses a number of
challenges, such as the cost of renting test tracks and integrating
V2X technology. To develop and test V2X applications more
cheaply and at early development stages, simulation is a key
enabler. There are several open-source tools that can simulate
V2X communication, but a comprehensive and easy-to-use
solution that enables to simulate V2X communication combined
with sensor data required for automated driving is missing.
Therefore, this paper presents an open-source approach that
extends the CARLA simulation platform with a new module to
create a unified environment for developing V2X applications
in simulation. Different parameters can be set individually to
account for real-world sensor’s differences. Mechanisms for
generating, transmitting and receiving Cooperative Awareness
Messages (CAM) are implemented. For the transmission, dif-
ferent propagation models are included, taking into account the
outlines of vehicles and buildings: Line of sight (LOS), non-line
of sight due to vehicles (NLOSv) and non-line of sight due to
static objects (NLOSb). We perform a benchmark measurement
with a varying number of simulated vehicles, indicating that
simulating the V2X communication introduces only a small
overhead to the simulated sensors, such as cameras. The code
for the V2X additions to CARLA is available online.

Index Terms— Automotive, Autonomous vehicles, V2X, Ve-
hicular communication, Vehicle-to-Everything, CARLA, Simu-
lation

I. INTRODUCTION

The two major trends that are transforming the automo-
tive industry are automated driving and connectivity to the
environment and the Internet, both of these are software
functions [1]. The software-defined vehicle is based on
data-driven development, especially for automated driving
functions. Along with this, the seamless exchange of in-
formation between vehicles and their environment, known
as vehicle-to-everything (V2X) communication, can have
a major impact on improvements in road safety, traffic
efficiency and overall sustainability in transportation [2],
[3], [4]. New communication standards and technologies
constantly improve the capabilities of V2X communication,
e.g. 5G-based V2X has shown lower latency than 4G V2X
in real-world measurements [5].

As the demand for innovative V2X applications grows,
there is an increasing need for efficient and cost-effective
means of exploring the intricacies of V2X communica-
tions [2]. The limitations of real-world testing, including the

unpredictability of traffic scenarios, the cost of conducting
large-scale trials and the potential risks involved, emphasize
the importance of a controlled and scalable environment
that a simulation platform can provide. Simulated testing
has advantages in the rapid prototyping and iterative testing
enabled by this virtual test track.

For the development of automated driving functions, sev-
eral commercial simulation tools are available [6], such
as IPG CarMaker1, Vector Informatik DYNA42, and Virtual
Test Drive3. A variety of scenarios can be tested and re-
produced in such virtual environments, ranging from rare
and dangerous events to extreme weather conditions and
uncommon traffic scenarios. For V2X simulation, in com-
parison, there is a corpus of open-source simulation tools,
such as Veins [7]. From commercial side, Vector Informatik’s
CANoe comes with a V2X option4. The open-source V2X
simulation approaches, however, focus more on protocol
and technology evaluations, e.g. comparing 5G and ITS-G5
performance [8], not on early application prototyping, and
are not integrated well with automated driving simulations.

While evaluating the V2X technology stack is an in-
valuable contribution, simulations should also enable to test
connected automated driving functions based on a versatile
sensor setup (e.g. cameras and lidar) and V2X communi-
cation. However, current works in this field focus on co-
simulating several tools. Learning to handle a new tool
always requires some time - who wants to struggle with more
than one tool, that need to be connected and synchronized?
Veins, for example, ships as a virtual machine to account
for setup hurdles. In our opinion, it is more user-friendly
and reduces the barrier to entry into a field of research if
new algorithms can be tested within just one tool with an
easy-to-use programming interface. Thus, this paper focuses
on the introduction of an integrated open-source simulation
framework as a solution to overcome the limitations of
current co-simulation-based tools, such as [9], [10].

Problem: Currently, open-source V2X simulation requires
co-simulation of several tools to fully cover all aspects of
cooperative automation, from V2X messages to camera and

1https://ipg-automotive.com/en/
products-solutions/software/carmaker/

2https://www.vector.com/int/en/products/
products-a-z/software/dyna4/

3https://hexagon.com/de/products/
virtual-test-drive

4https://www.vector.com/int/en/products/
products-a-z/software/canoe/option-car2x/
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Fig. 1: Schematic representation of the protocol stacks in the
various regions5

lidar sensors. While providing great solutions in their fields,
combining tools is usually cumbersome and poses an entry
barrier. Matching versions of different simulation tools from
automated driving and wireless communication need to be
set up together with an interfacing technology.
Aim: While perfectly suited to explore different V2X net-
work, transport and access layers, coupling established wire-
less simulators with automated driving simulators is not
putting the focus on enabling application research. This is
our goal - one easy-to-use simulation tool to enable more
research in cooperative automation.
Contribution: We extended the core CARLA server and
Python API code base with a new V2X Sensor. This en-
ables users to simulate V2V and V2I communication with
Cooperative Awareness Messages (CAM) by following the
common Python API procedures of CARLA sensors. The
implemented path loss model considers both LOS and NLOS
scenarios.

II. BACKGROUND

A. Vehicle-to-Everything (V2X)

V2X communication is a technology that facilitates com-
munication between vehicles and various elements of the
transportation ecosystem. The ”X” in V2X encompasses dif-
ferent types of communication, including vehicle-to-vehicle
(V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian
(V2P), and vehicle-to-network (V2N). This interconnected
communication system is fundamental to the advancement
of intelligent transportation and plays a critical role in the
development of autonomous and connected vehicles.

Due to varying regulations worldwide, there are multiple
standards for handling V2X. One of these is the European

5based on https://www.vector.com/de/de/know-how/v2x/

standard defined by the European Telecommunications Stan-
dards Institute (ETSI), that supports the CAM (cf. Fig. 1).
The main purpose of a CAM is to create and maintain the
awareness of vehicles on the road network to encourage
cooperative behavior. CAM includes status and attributes
details that are specific to the originating Intelligent Trans-
portation System (ITS) station. The specific content varies
depending on the type of ITS involved. In the case of
a vehicle, the status information includes elements such
as time, position, movement status and activated systems.
The attribute information includes details about dimensions,
vehicle type and role in road traffic [11].
A CAM consists of a standard ITS PDU header and multiple
containers. The ITS PDU header contains the protocol ver-
sion, the message type and the originating ITS station ID. For
vehicles, a CAM typically contains a basic container with
basic information, a high-frequency for dynamic data, and
optionally a low-frequency container for static details. There
may also be a special container with information specific to
the role of the vehicle. CAMs generated by a Road Side
Unit (RSU) must include a basic container and may include
additional containers. The CAM generation frequency is
managed by the CA basic service. The trigger conditions
for a CAM are specified in Table I. [11]
Besides the mentioned CAM Message, there are several other
important messages for V2X communication, cf. Fig. 1-
Application.

TABLE I: Trigger conditions for CAM message

Component Trigger conditions

Vehicle

Heading angle change > 4◦

Position difference > 4m
Speed change > 5m/s
Time elapsed > CAM Generation time
Low Frequency Container Time Elapsed > 500ms

RSU Time elapsed > 500ms

B. Channel models

Channel or propagation models play a crucial role in
the design and assessment of wireless data transmission,
aiming to replicate the distortion that signals experience
while travelling between transmitters (TX) and receivers
(RX). Wireless channels exhibit various effects, including at-
tenuation, reflection, transmission, diffraction, scattering, and
wave guiding. For instance, signal strength diminishes with
increasing distance between TX and RX due to attenuation,
while wave guiding, found in settings like urban canyons
and tunnels, preserves signal strength by constraining its
expansion. In the following, we summarize common models
that are important for our work. In general, we consider three
propagation scenarios: Line-of-Sight (LOS), Non-LOS due
to vehicles in the propagation path (NLOSv), Non-LOS due
to buildings or foliage in the propagation path (NLOSb).

1) Free space path loss: The Free Space Path Loss
(FSPL) model is a fundamental concept in wireless com-
munication that describes the attenuation of radio frequency
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signals as they propagate through free space. It is a simplistic
but essential model to estimate the signal strength at different
distance from a transmitting antenna. The FSPL (in dB) can
be calculated using

FSPL(d)/dB = 20 log10(d) + 20 log10

(
4π

λ

)
(1)

where d is the distance between the transmitter and receiver
in meters, λ is the wavelength of the signal in meters (m).

2) Log-distance path loss: Extending FSPL to a more
general case, where environmental conditions introduce ad-
ditional damping and fading, the Log-distance path loss
(LDPL) was derived.

LDPL(d)/dB = FSPL(dref) + 10γ log10

(
d

dref

)
+X (2)

where γ is an environment-dependent path loss exponent,
dref is a reference distance, and X being a random (nor-
mal [12] or log-normal [13]) distributed variable that models
fading.

3) Two-ray ground reflection: The Two-ray Ground Re-
flection loss (TRGL) model is a radio wave propagation
model that considers the effects of reflections from the
ground. In addition to the direct path between the transmitter
and the receiver, the signal also travels indirectly by reflect-
ing off the ground. This reflection introduces a delay and am-
plitude variation to the received signal. The different phase
leads to constructive and destructive interference depending
on the distance. The TRGL calculates to

TRGL(d)/dB = 20 log10

(
4πd

λ
|1 + Γeiϕ|−1

)
(3)

with

Γ =
sin θ −

√
ϵr − cos2 θ

sin θ +
√
ϵr − cos2 θ

(4)

sin θ =
ht + hr

drefl
, cos θ =

d

drefl
(5)

for the incidence angle θ and the relative permittivity ϵr of
the road. The phase difference ϕ between the rays is

ϕ =
2π(dlos − drefl)

λ
(6)

As shown [14], using the full TRGL calculation instead of
an approximation yields a more accurate model of free space
propagation for V2V links.

4) Multiple Knife-edge diffraction: When the LOS is
blocked, the wireless signal may reach its destination
by bending around corners (diffraction). Especially in the
NLOSv cases, diffraction of the wireless signal over the
tops and between vehicles is of importance. A usual way
to model this is treating each vehicle blocking the LOS as a
knife-edge obstacle. Several obstacles may be combined by
finding major and minor obstacles and calculating individual
knife-edge loss for each, as e.g. implemented in the model
of Boban et al. [12], [15] used in the Artery6 simulator and

6http://artery.v2x-research.eu/

recommended by ETSI [16]. Each vehicle that is considered
as an obstacle contributes

Lv/dB = 6.9 + 20 log10(
√

(v − 0.1)2 + 1 + v − 0.1) (7)

if v > −0.78, and 0 otherwise. v is approximated for
small height differences between the sender, receiver and the
obstacle with

v =

√
2d

λ
· h

dtx,v
· h

dv,rx
(8)

and h being the height of the obstacle vehicle, and dtx,v
and dv,rx being the distances between sender and obstacle
vehicle, and vehicle and receiver, respectively.

C. CARLA simulator

The CARLA Simulator [17] mainly consists of two parts:
The simulator and the CARLA client, usually referred to
as the server and the client for short (cf. Fig. 2). The
CARLA server itself is a plugin of the Unreal Engine. The
server and client communicate via a TCP connection so
that sensor data can be received, and control commands
sent via Python scripts that import the Python API. Several
parts are required for sensor data to reach the Python script
from the Unreal Engine. First, a sensor is an Unreal Engine
Actor, as part of the CARLA plugin. In addition, an object
for the representation of the sensor data and a serializer /
deserializer for each sensor are defined in LibCarla. The
sensor data object is passed to the C++ or Python API. To
extend CARLA with new sensors, these three parts must
therefore be developed.

LibCarla

Unreal

Engine

Carla 

Plugin
Server Client Python APIC++ API

TCP

Simulator Carla Client

Fig. 2: Communication and data flow in CARLA7

III. RELATED WORK

Established tools for combined simulation of vehicle mo-
bility and communication are Artery [18] and Veins [7], for
example. However, they focus on exploring the vehicular
networking protocols, not on their integration with 3D envi-
ronment simulations, which are the core of automated driv-
ing application research. One of the projects considering a
broader scope is VSimRTI [19], which is the basis of Eclipse
MOSAIC [10]. However, while MOSAIC incorporates sev-
eral communication tools (e.g. ns-3, OMNeT++), vehicles
are only simulated with Eclipse SUMO [20]. Accordingly,
MOSAIC’s functionality doesn’t exceed Artery or Veins sub-
stantially. Choudhury et al. integrated VISSIM, MATLAB,
and NS-3 for traffic modelling, traffic management applica-
tions, and communication network simulation [21]. However,

7according to https://carla.readthedocs.io/en/0.9.15/
img/pipeline.png
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the use of commercial software and the co-simulation of
multiple tools pose challenges. In addition, sensor simulation
for automated driving and advanced driver assistance systems
(ADAS) is limited. Naumann et al. introduced an open-
source simulation framework for traffic participants interac-
tions using Robot Operating System (ROS) [22]. Focusing
on interaction modeling and cooperative motion planning,
perception was not considered. In addition, the simulation
of the physical V2X communication is limited to specifying
message drop or delays. Zhang and Masoud utilize the
Gazebo Engine as a simulator for V2X, addressing realis-
tic environment simulation, sensor simulation, and vehicle
dynamics [23]. However, in comparison with simulators
targeting automated driving such as CARLA and (LG)SVL,
Gazebos virtual worlds are limited.

Besides, there are several works co-simulating CARLA
with real or simulated V2X setups. Hardes et al. [24]
combine OMNeT++ / Veins with CARLA using gRPC8 and
Protocol Buffers9 as the coupling interface. Qiu et al. [25]
also employ CARLA for cooperative driving, however, the
implementation of path loss remains unclear. Cislaghi et
al. [26] use ZeroMQ10 to couple CARLA with OMNeT++.
The approach was evaluated for a teleoperation use case over
a 5G network. Another approach was presented by Zhao et
al. [9]. They use SUMO, OMNeT++, and Unity3D to model
the traffic, V2X communication and visualization. The tools
are coupled with a specific communication protocol.

IV. THE CARLA V2X SENSOR

In the following, we present our concept for extending
the state-of-the-art automated driving simulator CARLA [17]
with a new V2X Sensor. CARLA was chosen as the starting
point for our development, because it is an established open-
source simulator for research in automated driving, based on
the Unreal Engine. Aiming for an ADAS-focused simulation
environment, the major requirements for our work were

• an open-source realization,
• a realistic 3D environment,
• vehicle dynamics simulation,
• ADAS sensor simulation,
• configurable channel model for wireless propagation,
• support for both standard messages and custom data,
• a simple API for control and configuration of the

simulation.
CARLA covers a large amount of requirements, such as
vehicle dynamics, ADAS sensor simulation, and comes with
a ROS2 interface11 and a Python API. While the ROS
interface is helpful to connect to vehicle-internal networks
and simulated in-vehicle applications, e.g. [27], external
communication is not yet part of CARLA’s simulation ca-
pabilities. In comparison to current research, focusing on
co-simulation of several simulators, we make use of the

8https://grpc.io/
9https://protobuf.dev/
10https://zeromq.org
11https://github.com/carla-simulator/ros-bridge

inherent open-source nature of CARLA, and contribute a
new feature to the open-source codebase, whose details are
outlined in the following. Currently, a pull request to the
main branch of CARLA with our contribution is open, the
new V2X Sensor12.

A. Overview

In our enhancement, a new sensor is introduced to CARLA
that handles tasks in the facilities and access layer (cf. Fig.3).
This sensor serves two roles: Managing the initiation and
generation of messages according to the facilities layer’s
needs and simulation of propagation modes (LOS, NLOS)
in the access layer. The implemented path loss model is
configurable to the user’s needs, e.g. to model real-world
behavior. Specifically, our simulation focuses on the simula-
tion of communication by CAM with its trigger conditions,
which are provided for in the ETSI standard [11] (cf. TableI).
Besides, we implement a custom message, that allows to
send arbitrary strings at user-defined points in time utilizing
the common path loss models. This message may be used
to explore new cooperative applications, where custom data
needs to be transmitted, that is currently not covered in
standards.

In comparison to other simulators, we haven’t imple-
mented the network and transport layer yet, considering only
broadcast communication. What distinguishes our approach
from co-simulation based approaches, is that V2X applica-
tions can be written in Python without further configuration
of the simulator. Users instantiate vehicles and parametrize
and attach sensors to the vehicles via the Python API.
This enables, for example, to simulate the interaction of
camera- and V2X-equipped vehicles in combination with
non-connected vehicles with a few lines of code.

Realization within CarlaETIS ITS reference architecture

Network & 

Transport 

Layer

M
a
n

a
g

e
m

e
n

t

S
e
c
u

ri
ty

LOS 

NLOSv

NLOSb

CARLA

Access Layer

Facilities Layer

CAM Message

V2X Application

V2X Sensor

Custom Message

Python API

Message Service

Python

Application

Communication 

Simulation

Fig. 3: V2X sensor representation in CARLA as per ITS
Reference architecture

B. Propagation model

In the context of propagation simulation, the objective
is to address the disparity between simplified statistical
models and computationally more expensive geometry-based
models. The presence of nearby buildings, foliage, and
vehicles is taken into account to assess the line-of-sight
conditions for each link, which has a substantial impact

12https://github.com/carla-simulator/carla/pull/
7490
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on V2X communication [12], [28]. Besides LOS, NLOSb
and NLOSv models, we incorporate a simple fading model
for small-scale variations. In general, we follow Artery’s
implementation for the LOS, NLOsb, NLOSv and fading
model, but enable the user to choose the Winner+ model [29]
as an alternative. In sum, the propagation loss calculates to

Ltotal = LPL + LAG + LSF (9)

with LPL being the path loss from the geometrical or the
Winner+ model, LAG being a constant, configurable offset
due to the antenna gains of sender and receiver (default:
10 dB), and LSF the small-scale shadow fading loss.

1) Propagation class calculation: As outlined, we employ
propagation models for three different classes of propaga-
tion. Accordingly, we need to find out which model to
use for a given link. The method used for this purpose is
the LineTraceMultiByObjectType API provided by
Unreal Engine13. This API traces a ray against the world,
using specified object types, and returns information about
hits between the specified source and destination points.
Important to note are the used query parameters, where
the ECollisionChannel enumeration defines the object
classes that can be queried14. We use ECC WorldStatic,
ECC PhysicsBody, ECC Vehicle and ECC WorldDynamics.

2) Geometry-based model: The geometry-based model
uses three different calculations depending on the line-of-
sight condition (LOS, NLOSv, NLOSb). For LOS links, the
implementation involves the full two-ray ground reflection
model (cf. Sec. II). The consideration of the height of the
antennas is crucial in this context, as small differences in
height between Tx or Rx results in significantly different
interference relationships between the LOS and ground-
reflected ray [14]. We also consider the height differences
of the roads when calculating the two-ray model.

Modelling NLOSv links bases on the free-space path loss
model, and incorporates the blockage loss per vehicle. A
model for vehicles-as-obstacles is described in [12], where
vehicles are modelled using the (multiple) knife-edge diffrac-
tion. This model calculates additional attenuation due to each
of the vehicles blocking the LOS link. For computational rea-
sons, we only consider the maximum knife-edge diffraction
loss of the tops of all blocking vehicles instead of combining
these losses.

For NLOSb links, the path loss is calculated using the
Log-distance path loss model (cf. Sec. II). This model with
appropriate path loss exponent and shadowing deviation was
experimentally shown to model the path loss for V2V links in
NLOSb scenarios [28]. Following [28], [16], we use dref =
1m, PL(dref) = 47.86 dB, γ = 2.7 as default parameters for
the model, where PL(dref) is the path loss at the reference
distance ref and γ is the path loss exponent. However, the
parameters can be configured by the user.

13https://docs.unrealengine.com/4.26/
en-US/API/Runtime/Engine/Engine/UWorld/
LineTraceMultiByObjectType/

14https://docs.unrealengine.com/4.26/en-US/API/
Runtime/Engine/Engine/ECollisionChannel/

TABLE II: Small-scale fading standard deviations in (dB)

Link type Highway Rural Urban

LOS 3.3 4.25 5.2
NLOSv 3.8 4.55 5.3
NLOSb 6.8 6.8 6.8

3) Winner+ model: For completeness, the Winner+
model [29] is specified as:

L/dB =


32.4 + 20.0 log10(d) + 20.0 log10(fc) 1)
38.77 + 16.7 log10(d) + 18.2 log10(fc) 2)
36.85 + 30.0 log10(d) + 18.9 log10(fc) 3)

with frequency fc in GHz, distance d in meters, and case 1)
highway and NLOSv or LOS, 2) urban and NLOSv or LOS,
and 3) NLOSb.

4) Shadow fading: A shadow fading loss is added to all
three propagation classes by default, to account for small
scale variations, as used in [15]. We employ a simple Gaus-
sian model, with a standard deviation σ in dB depending on
the propagation class (LOS, NLOSb, NLOSv) and a scenario
parameter (urban, rural, highway) that is selected by the user.
Adapted from [16], the parameters for the different scenarios
are shown in Table II. Because [16] does not mention
parameters for the rural scenario, we assume the average
of highway and urban scenario standard deviation values. In
addition, we take the NLOSb value for the urban scenario for
the highway and rural scenario as well. Alternatively, the user
may configure a custom standard deviation for the Gaussian
model, that is used independently of the propagation class
or scenario.

C. CARLA integration

To incorporate a new sensor into CARLA, the steps
outlined in the official documentation15 are applied. Ac-
cordingly, this section is intentionally more technical to
facilitate third-party developers to extend our work with
new V2X messaging services. Figure 4 depicts the in-
heritance relationship where the ASensor class is derived
from the AActor class. ASensor introduces virtual func-
tions such as Set, PrePhysTick, and PostPhysTick.
These need to be implemented in the V2XSensor
classes AV2XSensor and ACustomV2XSensor. The
AV2XSensor class implements the CAM-generating sen-
sor, while ACustomV2XSensor implements the custom
V2X message. We separate the message generation function-
alities, but both classes integrate the same path loss model
class. Following the Unreal Engine naming convention, be-
cause the V2X sensors inherit from AActor, the V2X sensor
classes are also prefixed by ”A”.

The static variables V2XActorContainer and
ActorV2XMessageMap serve to build a shared view of
all AV2XSensors (respectively ACustomV2XSensors),

15https://carla.readthedocs.io/en/0.9.15/tuto_D_
create_sensor/
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and the triggered messages in the current simulation step.
The CaService object generates and triggers CAMs, while
the PathLossModel object provides the different path loss
models and the respective parameters.

AActor

CaService

ASensor

+ Set(): void

+ PrePhysTick(): void

+ PostPhysTick(): void

PathLossModel

AV2XSensor

- mV2XActorContainer: list<AActor*>

- mActorV2XDataMap: map<AActor*, CAMData>

+ Set(): void

+ PrePhysTick(): void

+ PostPhysTick(): void

CaServiceObj

1

PathLossModelObj*

1

ACustomV2XSensor

- mV2XActorContainer: list<AActor*>

- mActorV2XDataMap: map<AActor*, CustomV2XData>

+ Set(): void

+ PrePhysTick(): void

+ PostPhysTick(): void

+Send(message: string): void

PathLossModelObj*

1

Fig. 4: Class diagram of the integration of the V2X sensor

During each simulation step, CARLA first executes
PrePhysTick() for all objects (e.g., sensors), then
PostPhysTick() is invoked. Accordingly, our approach
generates messages for all V2XSensor objects during the
PrePhysTick() phase (according to the triggering con-
ditions), and transmits them during the PostPhysTick()
phase, using the path loss model. For the custom V2X sensor,
the user sets the message to be sent via the send function
using the Python API. In the next simulation step, this
message is broadcasted once to all other vehicles that are
equipped with the custom V2X sensor.

D. Configuration possibilities

We expose several parameters of the V2X Sensor (cf.
Table III) to the Python API to allow for customization and
the evaluation of multiple sensors or scenarios. The transmit
power and receiver sensitivity default values are derived from
Cohda Wireless MK6 OBU [30], serving as reference points
for real-world V2X sensors. A seed value can be used to
ensure reproducible randomness. The filter distance is used to
speed up the calculations on large maps, calculating the path
loss model only for potential recipients within this distance.
The transmission frequency is a parameter that is shared
among the V2X sensor instances to ensure that all sensors
are always configured with the same frequency.

As the V2XSensor and the CustomV2XSensor use the
same path loss model, they can both be configured with
the same set of parameters in this respect. It is possible to
set the scenario (urban, rural, highway), and the used model
(Winner+ or geometric model). As mentioned in section IV-
B.4, the fading noise is dependent on the scenario and path
loss class (LOS, NLOSv, NLOSb), or can be customized with
the parameters use etsi fading=false and the custom

TABLE III: Default settings for configurable parameters

Parameter Default Value (Options)

General parameters

transmit power 21.5 dBm
receiver sensitivity −99 dBm
frequency ghz 5.9GHz
noise seed 0
filter distance 500m

Path loss model parameters

combined antenna gain 10.0 dB
scenario urban [rural, highway]
path loss model geometric [winner]
d ref 1.0m
path loss exponent 2.7
use etsi fading true [false]
custom fading stddev 0.0dB

CAM-related parameters

gen cam min 0.1 s
gen cam max 1.0 s
fixed rate false [true]

fading standard deviation value. Finally, for the LDPL model,
the path loss exponent and the reference distance (dref ) can
be set.

The CAM message generation can be configured with
minimum and maximum delta times. In addition, a debug
option fixed rate is available that generates a CAM
message in every simulation step. The data, that is sent in
CAM messages, can also be noisy with Gaussian distribution.
Here, the user can specify standard deviation and bias of the
latitude, longitude, altitude, heading, and yaw rate. For the
accelerations in all three axes and for the forward velocity,
the user can set a standard deviation for a Gaussian noise.

V. EVALUATION

To measure the performance of the simulation, we use
a modified version of the performance benchmark script16,
which is included in the CARLA source code. We evaluated
the performance on a desktop PC with a CPU Intel(R)
Core(TM) i7-8700K CPU @ 3.70GHz, 46.99 GB RAM and
an NVIDIA GeForce RTX 3060 Ti GPU. The camera and
lidar sensors send data with every tick, so the time between
two data receipts is used to calculate the frame rate. Since the
V2X sensor does not send a message to the client with every
tick, it is not possible to calculate the frame rate in the same
way when using the V2X sensor. This only can be realized
if the parameter fixed rate is set, as a message is then
generated in every frame. Therefore, we measure different
settings with the modified script:

1) Without V2X: Baseline performance on used hardware
2) With V2X sensor, CAM generation according to ETSI
3) With V2X sensor, CAM generation after each tick

In each of the settings 1)-3), two sensor setups are evaluated:
one camera (1920x1080 pixels) or one lidar (500k points) per

16https://carla.readthedocs.io/en/0.9.15/adv_
benchmarking/
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vehicle. Town 01 was used, and the frame rate is averaged
over the three weather settings ClearNoon, CloudyNoon and
SoftRainSunset. The simulation was run for 1,200 ticks =
1 minute simulation time (with a fixed step size of 0.05 s).
Accordingly, for setting 3, every 50ms in simulation time,
a message is generated. A frame rate above 20 frames per
second (FPS) would mean that we can simulate faster than
real-time. We varied the number of vehicles in the simulation
from two to 50.
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Fig. 5: Benchmark results per sensor setup and V2X setting

Fig. 5 shows the influence of the two sensor setups versus
the influence of the V2X setting and the number of vehicles.
Generally, simulating cameras instead of lidars introduces
higher frame rate degradation than enabling V2X with ETSI
triggering conditions. Triggering a CAM in every tick, on the
other hand, would substantially decrease the performance.

TABLE IV: Mean lidar + camera FPS of the CARLA
simulation with and without V2X

Setting Mean FPS
2 Veh. 5 Veh. 10 Veh. 25 Veh. 50 Veh.

1) no V2X 43.72 17.61 8.93 3.38 1.50
2) ETSI 41.83 17.63 8.32 3.37 1.47
3) Fixed rate 16.66 6.65 3.54 1.34 0.60

The results (cf. Table IV) indicate, that the usage of
the V2X Sensor introduces an overhead of 0.43% if CAM
messages are generated according to the ETSI standard with
two vehicles. If the V2X sensors generate a message in
every tick, the performance degrades for two vehicles around
61.89% compared to not simulating V2X. The simulation
speed generally degrades with the number of vehicles, which
is expected due to the growing number of simulated sensors
(cameras, lidars). However, the overhead of V2X stays
below 0.7%, if triggered according to the ETSI standard,
independent of the number of vehicles. This indicates that
the influence of additional ADAS sensors on the simulation

performance is much stronger than (standards-conforming)
V2X simulation.

Given the qualitative evaluation in Table V, our approach
combines V2X communication (CAM and custom messages)
as well as sensors for ADAS and vehicle dynamics. To
achieve similar capabilities with current approaches, it is
necessary to combine several tools, such as within Veins or
Artery (both require Sumo and OMNeT++), while missing
the ability to simulate ADAS such as cameras. This would
require a combination of the above tools with Carla (or
another capable simulator).

TABLE V: Comparison of open-source tools to simulate
V2X and ADAS
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Veins
[7]

2 ✓ - ✓ ✓ TraCI/
C++

- (✓)

Artery
[18]

2 ✓ - ✓ ✓ TraCI/
C++

- (✓)

Carla
[17]

1 - - - - Python ✓ ✓

Carla+
Veins [24]

3 ✓ - ✓ ✓ combined
(gRPC)

✓ ✓

Ours 1 ✓ ✓ ✓ - Python ✓ ✓

✓= fulfilled, (✓) = partially fulfilled, - = not fulfilled

VI. CONCLUSION

The simulation of sensor data, driving dynamics and wire-
less communication between vehicles and the environment is
an important step in the development of automated vehicles.
Especially in the early development phases, where rapid pro-
totyping of algorithms is required, a simple interface to the
simulation tool used is essential. Currently, co-simulations
of several tools are mainly used in this environment, which
represents a barrier to entry into this field. In our work, we
present an alternative: the V2X sensor in CARLA. Without
co-simulation, ADAS sensor data, vehicle dynamics and
V2X communication can be simulated in a single tool.
When simulating V2X communication in addition to ADAS
sensors, such as camera and lidar, the simulation speed is
largely unaffected, compared to simulating only camera or
lidar. Our code is currently under review for integration into
the main code base of CARLA. In the future, we would
like to expose the V2X messages via the ROS interface of
CARLA. In addition, the integration of latency models for
the network and transport layer is planned to enable a more
accurate simulation of V2X communication. Other V2X
services such as Decentralized Environmental Notification
Message (DENM) [31] and Collective Perception Message
(CPM) [32] could also be implemented using the same
development steps.
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